Diversity, Ecology and Biogeochemistry of Cyst-Forming Acantharia (Radiolaria) in the Oceans
نویسندگان
چکیده
Marine planktonic organisms that undertake active vertical migrations over their life cycle are important contributors to downward particle flux in the oceans. Acantharia, globally distributed heterotrophic protists that are unique in building skeletons of celestite (strontium sulfate), can produce reproductive cysts covered by a heavy mineral shell that sink rapidly from surface to deep waters. We combined phylogenetic and biogeochemical analyses to explore the ecological and biogeochemical significance of this reproductive strategy. Phylogenetic analysis of the 18S and 28S rRNA genes of different cyst morphotypes collected in different oceans indicated that cyst-forming Acantharia belong to three early diverging and essentially non symbiotic clades from the orders Chaunacanthida and Holacanthida. Environmental high-throughput V9 tag sequences and clone libraries of the 18S rRNA showed that the three clades are widely distributed in the Indian, Atlantic and Pacific Oceans at different latitudes, but appear prominent in regions of higher primary productivity. Moreover, sequences of cyst-forming Acantharia were distributed evenly in both the photic and mesopelagic zone, a vertical distribution that we attribute to their life cycle where flagellated swarmers are released in deep waters from sinking cysts. Bathypelagic sediment traps in the subantarctic and oligotrophic subtropical Atlantic Ocean showed that downward flux of Acantharia was only large at high-latitudes and during a phytoplankton bloom. Their contribution to the total monthly particulate organic matter flux can represent up to 3%. High organic carbon export in cold waters would be a putative nutritional source for juveniles ascending in the water column. This study improves our understanding of the life cycle and biogeochemical contribution of Acantharia, and brings new insights into a remarkable reproductive strategy in marine protists.
منابع مشابه
Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria).
Acantharia are ubiquitous and abundant rhizarian protists in the world ocean. The skeleton made of strontium sulphate and the fact that certain harbour microalgal endosymbionts make them key planktonic players for the ecology of marine ecosystems. Based on morphological criteria, the current taxonomy of Acantharia was established by W.T. Schewiakoff in 1926, since when no major revision has bee...
متن کاملRadiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny
Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previous...
متن کاملNew perspectives on the functioning and evolution of photosymbiosis in plankton
Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and a...
متن کاملMorphology and Phylogeny of Scrippsiella trochoidea (Dinophyceae) a potentially harmful bloom forming species isolated from the sediments of Iran’s south coast
Phytoplankton cells and resting cysts of the species Scrippsiella trochoidea are regular and dominant components of the dinoflagellate flora of coastal marine waters and sediments around the world. This species is a common harmful bloom forming species in coastal waters. In this study, for the first time cyst of S. trochoidea were isolated from the sediments of southeast coast of Iran. Five str...
متن کاملPatterns of diversity in marine phytoplankton.
Spatial diversity gradients are a pervasive feature of life on Earth. We examined a global ocean circulation, biogeochemistry, and ecosystem model that indicated a decrease in phytoplankton diversity with increasing latitude, consistent with observations of many marine and terrestrial taxa. In the modeled subpolar oceans, seasonal variability of the environment led to competitive exclusion of p...
متن کامل